Solution 8.1

(a) Consider a quantum mechanical system described by Hamiltonian /, and for
which we know the solutions to the time-independent Schrodinger equation

Hy|n) = E,|n) and the time-dependent Schrodinger equation
. a —io,t —io
Ihmjme = Hnye

At time ¢ = 0 we apply a time-dependent change in potential W(f) so the new

Hamiltonian is H = Hy+ W(t) and the state [y(£)) evolves in time according to
)

ihsdw(0) = (Ho+ WO)lw(0)

where [W(8)) = > a,(0)|m e and a,(!) are time dependent coefficients.

Substitution of the state [y (£)) in to the time-dependent Schridinger equation gives
. d —iw,t —io,t
s a(ime " = (Hy+ WO)Fa,(0lne
n 1

Using the product rule for differentiation ((f2)' = (/'g + /fg')), one may rewrite the left-
hand-side as

. a —io,f a —io,f H W —io,t
iz((Fano)me ™ +ao(Fne ™)) = s W)z a(oime

and remove the term

. a —iw,t —iw,t
Ih§311<t)a_lln>e = %:a,,(f)Ho|H>€

to leave

. —iw”fa —io ,t

iy |me " ~a,0) = Ta,()Woime

Multiplying both sides by (m| and using the orthonormal relationship (mn) = J,,
gives

.;i f _ I < Wf > jmmn[
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However, since

<m| W( t)|H> = _‘.(]);I(X) eiml”[ W(DH(X) eimnrdX = [/Vnu;leimm"t

where how,, = E,- E, and W, is defined as the matrix element ILDZI(X) Wo ,(x)dx,

we may write
. d oy,
Ihmam( f) = Z an( I) [/I/;m:e
1

If the system is initially in an eigenstate |m) of the Hamiltonian FH, then
a,(t=-e) =1 and a,(f=-o) = 0 for m# n. Using first order perturbation the-

ory in which we approximate a,(f) with its initial value such that a,(f) = 1, we may
write
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Integration from the time when the perturbation 1s applied at £ = 0 gives
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(b) The transition probability from state |n) to state |m) is P,, |am(t)|2 . Using

our solution in part (a) we have
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In the problem we have iitial state |n= 0) and we consider the long time limit,

{— oo this allows us to write
= 2
U 3 (imo-1/1)t
nm = |< |0>| J- dr
=0
where, for the harmomc oscillator, the non-zero positive integer m multiplied by the
frequency o is related to the difference in energy eigenvalue by mo = (E, - Ey)/h.

The time integral is
t'=co 2

j e(fm(u—l/t)f'dt/ _
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and the matrix elements (m|X3|U) are found using X = (h/2mo) “(b + b), where
my, 1s the particle mass. In our case only transitions [0) —|1) and [0) — [3) are

allowed.

0y = (h/2mo) (b° + b+ B = (h/2mym) 2 J65, 5+ 38, )

where we used iﬂn} = (n+ 1)1/2|n+ 1, b = Hl/zln— 1y, b0y =0, and
<m|n> IIIH
Hence,
V§| 3 |2(:w (imo-1/7)¢ ’ h : QVS
Py = ki) [ e rar) = (=) )
“ h2< 1 I,J:-U 2myw) \(hw)* +h'/1°
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Vg 2('2@@ ‘ 2 h 3 GVZ
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b = @10 IU Tmo) \ Gy s W7

So, in the long time limit, {— oo, the maximum probability of the transition taking

place occurs as T — oo .

Solution 8.2
(a) The eigenstates of a particle in a one-dimensional rectangular potential well for

which V(x) = 0 inthe range 0 < x< L and V(x) = oo elsewhere are

i = ﬁsinmx)
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where &k, = nm/L, n = 1,2, 3, ..., and eigenenergies are £, = 7°k,/2m = ho,.

2,2
The perturbation W(x. t) = —exE,..e' " is turned on at time 7 = 0, where T and
E, o 18 the maximum strength of the applied electric-field. The probability P,, that

the particle will be found in the first excited state in the long time limit, {— oo is

z 2
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where hw,, = E,- E,. The integral for (2|x|]1) can be found by noting k, = 2n/L,
k = m/L, and making use of the relationship

2sin(x)sin(y) = cos(x- y) — cos(x+ y) so that

2|X1) = %}Xsin(z%Y)sin(J%()dX = %}X{cos(%‘)— cos(ngYDdX
0 0

The first term on the right-hand-side in the integral 1s

%J:XCOS (J%Y)d - %[Xsm(’%):lj - _J.S n(nLX)d = ;—Ll:cos (NLXH: _ ‘Z_ZL

1

and the second term on the right—hqnd—mde in the mtegral 1s

o () - 2] - 3 - 23] - 2

0

HenLe

21%1) = fosm( Lx)sm(LX)d _sz 92352 = _9122L

Substituting the value of |(2|X|1>| into our expression for the probability, we have
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bety = %_ I!T so that f, (- [2 = - % —}’2 and df = tdy. We now can write
T
2Efmx( lﬁL) oA j' e d _ zElzmx< 16[) e—wmr /Z‘C_TE
ohm’ _ 9hm 1

where m, = 3n°h/2ml’ and we made use of the standard integral

~ .. . . . ®
(b) If the electron 1s in a semiconductor and has an effective mass m = 0.07 x m, ,
where m, is the bare electron mass, and the potential well is of width L = 10 nm, we

can calculate the value of T for which P, 1s a maximum.

dPlZ t—> o0
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sothat T = J/2/®,,. Wenow find E,,,, for which P, = 1.
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This 1s a large electric field corresponding to a voltage drop of 1.17 V across the poten-

tial well of width . = 10 nm.



