Solution 8.1

(a) Consider a quantum mechanical system described by Hamiltonian \hat{H}_0 and for which we know the solutions to the time-independent Schrödinger equation $\hat{H}_0|n\rangle = E_n|n\rangle$ and the time-dependent Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} |n\rangle e^{-i\omega_n t} = \hat{H}_0 |n\rangle e^{-i\omega_n t}$$

At time t=0 we apply a time-dependent change in potential $\hat{W}(t)$ so the new Hamiltonian is $\hat{H}=\hat{H}_0+\hat{W}(t)$ and the state $|\psi(t)\rangle$ evolves in time according to

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = (\hat{H}_0 + \hat{W}(t)) |\psi(t)\rangle$$

where $|\psi(t)\rangle = \sum_{n} a_n(t) |n\rangle e^{-i\omega_n t}$ and $a_n(t)$ are time dependent coefficients.

Substitution of the state $|\psi(t)\rangle$ in to the time-dependent Schrödinger equation gives

$$i\hbar \frac{d}{dt} \sum_{n} a_n(t) |n\rangle e^{-i\omega_n t} = (\hat{H}_0 + \hat{W}(t)) \sum_{n} a_n(t) |n\rangle e^{-i\omega_n t}$$

Using the product rule for differentiation ((fg)' = (f'g + fg')), one may rewrite the left-hand-side as

$$i\hbar\sum_{n}\left(\left(\frac{\partial}{\partial t}a_{n}(t)\right)|n\rangle e^{-i\omega_{n}t}+a_{n}(t)\left(\frac{\partial}{\partial t}|n\rangle e^{-i\omega_{n}t}\right)\right)=(\hat{H}_{0}+\hat{W}(t))\sum_{n}a_{n}(t)|n\rangle e^{-i\omega_{n}t}$$

and remove the term

$$i\hbar \sum_{n} a_{n}(t) \frac{\partial}{\partial t} |n\rangle e^{-i\omega_{n}t} = \sum_{n} a_{n}(t) \hat{H}_{0} |n\rangle e^{-i\omega_{n}t}$$

to leave

$$i\hbar \sum_{n} |n\rangle e^{-i\omega_{n}t} \frac{\partial}{\partial t} a_{n}(t) = \sum_{n} a_{n}(t) \hat{W}(t) |n\rangle e^{-i\omega_{n}t}$$

Multiplying both sides by $\langle m|$ and using the orthonormal relationship $\langle m|n\rangle = \delta_{mn}$ gives

$$i\hbar \frac{d}{dt}a_m(t) = \sum_n a_n(t) \langle m| \hat{W}(t) | n \rangle e^{i\omega_{mn}t}$$

However, since

$$\langle m|\hat{W}(t)|n\rangle = \int \phi_m^*(x) e^{i\omega_m t} W \phi_n(x) e^{-i\omega_n t} dx = W_{mn} e^{i\omega_{mn} t}$$

where $\hbar \omega_{mn} = E_m - E_n$ and W_{mn} is defined as the matrix element $\int \phi_m^*(x) W \phi_n(x) dx$, we may write

$$i\hbar \frac{d}{dt}a_m(t) = \sum_n a_n(t) W_{mn} e^{i\omega_{mn}t}$$

If the system is initially in an eigenstate $|n\rangle$ of the Hamiltonian \hat{H}_0 then $a_n(t=-\infty)=1$ and $a_m(t=-\infty)=0$ for $m\neq n$. Using first order perturbation theory in which we approximate $a_n(t)$ with its initial value such that $a_n(t)=1$, we may write

$$i\hbar \frac{d}{dt}a_m(t) = W_{mn}e^{i\omega_{mn}t}$$

Integration from the time when the perturbation is applied at t = 0 gives

$$a_m(t) = \frac{1}{i\hbar} \int_{t'=0}^{t'=t} W_{mn} e^{i\omega_{mn}t'} dt'$$

(b) The transition probability from state $|n\rangle$ to state $|m\rangle$ is $P_{nm} = |a_m(t)|^2$. Using our solution in part (a) we have

$$P_{nm} = \frac{1}{\hbar^2} \left| \int_{t'=0}^{t'=t} \langle m | V(x, t) | n \rangle e^{i\omega_{mn}t'} dt' \right|^2 = \frac{V_0^2}{\hbar^2} \left| \int_{t'=0}^{t'=t} \langle m | \hat{x}^3 | n \rangle e^{(i\omega_{mn}-1/\tau)t'} dt' \right|^2$$

In the problem we have initial state $|n=0\rangle$ and we consider the long time limit, $t \to \infty$, this allows us to write

$$P_{nm} = \frac{V_0^2}{\hbar^2} |\langle m | \hat{x}^3 | 0 \rangle|^2 \left| \int_{t'=0}^{t'=\infty} e^{(im\omega-1/\tau)t'} dt' \right|^2$$

where, for the harmonic oscillator, the non-zero positive integer m multiplied by the frequency ω is related to the difference in energy eigenvalue by $m\omega = (E_m - E_0)/\hbar$. The time integral is

$$\left| \int_{t'=0}^{t'=\infty} e^{(im\omega-1/\tau)t'} dt' \right|^2 = \frac{1}{m^2 \omega^2 + 1/\tau^2}$$

and the matrix elements $\langle m|\hat{x}^3|0\rangle$ are found using $\hat{x}=(\hbar/2\,m_0\omega)^{1/2}(\hat{b}^\dagger+\hat{b})$, where m_0 is the particle mass. In our case only transitions $|0\rangle\to|1\rangle$ and $|0\rangle\to|3\rangle$ are allowed.

$$\langle m | \hat{x}^3 | 0 \rangle = (\hbar / 2 m_0 \omega)^{3/2} (\hat{b}^{\dagger 3} + \hat{b} \hat{b}^{\dagger 2} + \hat{b}^{\dagger}) = (\hbar / 2 m_0 \omega)^{3/2} (\sqrt{6} \delta_{m=3} + 3 \delta_{m=1})$$

where we used $\hat{b}^{\dagger}|n\rangle = (n+1)^{1/2}|n+1\rangle$, $\hat{b}|n\rangle = n^{1/2}|n-1\rangle$, $\hat{b}|0\rangle = 0$, and $\langle m|n\rangle = \delta_{mn}$.

Hence,

$$P_{01} = \frac{V_0^2}{\hbar^2} |\langle 1|\hat{x}^3|0\rangle|^2 \left| \int_{t'=0}^{t'=\infty} e^{(im\omega-1/\tau)t'} dt' \right|^2 = \left(\frac{\hbar}{2m_0\omega}\right)^3 \left(\frac{9V_0^2}{(\hbar\omega)^2 + \hbar^2/\tau^2}\right)$$

and

$$P_{03} = \frac{V_0^2}{\hbar^2} |\langle 3|\hat{x}^3|0\rangle|^2 \left| \int_{t'=0}^{t'=\infty} e^{(im\omega-1/\tau)t'} dt' \right|^2 = \left(\frac{\hbar}{2m_0\omega}\right)^3 \left(\frac{6V_0^2}{(3\hbar\omega)^2 + \hbar^2/\tau^2}\right)$$

So, in the long time limit, $t \to \infty$, the maximum probability of the transition taking place occurs as $\tau \to \infty$.

Solution 8.2

(a) The eigenstates of a particle in a one-dimensional rectangular potential well for which V(x) = 0 in the range 0 < x < L and $V(x) = \infty$ elsewhere are

$$|n\rangle = \sqrt{\frac{2}{L}}\sin(k_n x)$$

where $k_n = n\pi/L$, n = 1, 2, 3, ..., and eigenenergies are $E_n = \hbar^2 k_n^2/2m = \hbar\omega_n$.

The perturbation $\hat{W}(x, t) = -exE_{\text{max}}e^{-t^2/\tau^2}$ is turned on at time t = 0, where τ and E_{max} is the maximum strength of the applied electric-field. The probability P_{12} that the particle will be found in the first excited state in the long time limit, $t \to \infty$ is

$$P_{12} = \frac{e^2 E_{\text{max}}^2}{\hbar^2} |\langle 2|\hat{x}|1\rangle|^2 \left| \int_{t'=0}^{t'=\infty} e^{i\omega_{21}t' - \frac{t'^2}{\tau^2}} dt' \right|^2$$

where $\hbar\omega_{21} = E_2 - E_1$. The integral for $\langle 2|x|1\rangle$ can be found by noting $k_2 = 2\pi/L$, $k_1 = \pi/L$, and making use of the relationship $2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$ so that

$$\langle 2|\hat{x}|1\rangle = \frac{2}{L} \int_{0}^{L} x \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{\pi x}{L}\right) dx = \frac{1}{L} \int_{0}^{L} x \left(\cos\left(\frac{\pi x}{L}\right) - \cos\left(\frac{3\pi x}{L}\right)\right) dx$$

The first term on the right-hand-side in the integral is

$$\frac{1}{L} \int_{0}^{L} x \cos\left(\frac{\pi x}{L}\right) dx = \frac{1}{\pi} \left[x \sin\left(\frac{\pi x}{L}\right) \right]_{0}^{L} - \frac{1}{\pi} \int_{0}^{L} \sin\left(\frac{\pi x}{L}\right) dx = \frac{-L}{\pi^{2}} \left[\cos\left(\frac{\pi x}{L}\right) \right]_{0}^{L} = \frac{-2L}{\pi^{2}}$$

and the second term on the right-hand-side in the integral is

$$\frac{1}{L} \int_{0}^{L} x \cos\left(\frac{3\pi x}{L}\right) dx = \frac{1}{3\pi} \left[x \sin\left(\frac{3\pi x}{L}\right) \right]_{0}^{L} - \frac{1}{\pi} \int_{0}^{L} \sin\left(\frac{3\pi x}{L}\right) dx = \frac{-L}{9\pi^{2}} \left[\cos\left(\frac{3\pi x}{L}\right) \right]_{0}^{L} = \frac{-2L}{9\pi^{2}} \left[\cos\left(\frac{3\pi x}{L}\right) \right]_{0}^{$$

$$\langle 2|\hat{x}|1\rangle = \frac{2}{L} \int_{0}^{L} x \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{\pi x}{L}\right) dx = \frac{-2L}{\pi^{2}} + \frac{2L}{9\pi^{2}} = \frac{-16L}{9\pi^{2}}$$

Substituting the value of $|\langle 2|x|1\rangle|^2$ into our expression for the probability, we have

$$P_{12} = e^{2} E_{\text{max}}^{2} \left(\frac{16L}{9\hbar\pi^{2}} \right)^{2} \left| \int_{t'=0}^{t'=\infty} e^{i\omega_{21}t' - \frac{t'^{2}}{\tau^{2}}} dt' \right|^{2}$$

Let $y = \frac{t}{\tau} - i \frac{\omega_{21} \tau}{2}$ so that $i \omega_{21} t - \frac{t^2}{\tau^2} = -\frac{\omega_{21}^2}{4} - y^2$ and $dt = \tau dy$. We now can write

$$P_{12} = e^{2} E_{\text{max}}^{2} \left(\frac{16L}{9\hbar\pi^{2}} \right)^{2} \left| e^{-\omega_{21}^{2}\tau^{2}/4} \int_{t=0}^{t=\infty} e^{-y^{2}} dy \right|^{2} = e^{2} E_{\text{max}}^{2} \left(\frac{16L}{9\hbar\pi^{2}} \right)^{2} e^{-\omega_{21}^{2}\tau^{2}/2} \frac{\tau^{2}\pi}{4}$$

where $\omega_{21} = 3\pi^2 \hbar/2mL^2$ and we made use of the standard integral

$$\int_{t'=0}^{t'=\infty} e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}.$$

(b) If the electron is in a semiconductor and has an effective mass $m^*=0.07\times m_0$, where m_0 is the bare electron mass, and the potential well is of width $L=10~\mathrm{nm}$, we can calculate the value of τ for which P_{12} is a maximum.

$$0 = \frac{dP_{12, t \to \infty}}{d\tau} = 2\tau e^{-\omega_{21}^2 \tau^2/2} - 2\tau (\omega_{21}^2 \tau^2/2) e^{-\omega_{21}^2 \tau^2/2}$$

$$0 = \frac{dP_{12, t \to \infty}}{d\tau} \to 2\tau - \omega_{21}^2 \tau^3 = 0$$

so that $\tau = \sqrt{2}/\omega_{21}$. We now find $E_{\rm max}$ for which $P_{12} = 1$.

$$P_{12} = \frac{\pi e^2 E_{\text{max}}^2}{4} \left(\frac{16L}{9\hbar\pi^2}\right)^2 \frac{2}{\omega_{21}^2} e^{-1} = \frac{\pi e^2 E_{\text{max}}^2}{4} \left(\frac{16L}{9\hbar\pi^2}\right)^2 2 \left(\frac{2mL^2}{3\pi^2\hbar}\right)^2 e^{-1} = 1$$

$$E_{\text{max}}^2 = \frac{4}{2\pi e^2} \left(\frac{9\hbar \pi^2}{16L} \frac{3\pi^2 \hbar}{2mL^2} \right)^2 e^1 = \frac{2}{\pi} \left(\frac{27\hbar^2 \pi^4}{32 \, meL^3} \right)^2 e^1$$

$$E_{\max} \ = \ \sqrt{\frac{2}{\pi}} \Big(\frac{27 \, \hbar^2 \pi^4}{32 \, meL^3} \Big) e^{0.5} \ = \ \sqrt{\frac{2}{\pi}} \Big(\frac{27 \times (1.05 \times 10^{-34})^2 \times \pi^4}{32 \times 0.07 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 10^{-24}} \Big) \times 1.65$$

$$E_{\rm max} = 1.17 \times 10^8 \text{ V m}^{-1}$$

This is a large electric field corresponding to a voltage drop of $1.17~\rm V$ across the potential well of width $L=10~\rm nm$.